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Abstract

We propose a novel Representation-based Hierarchical Federated Learning (RHFL) framework for privacy-
preserving household energy forecasting. The framework adopts a hierarchical architecture composed of lightweight
Fog-level local models and a Cloud-level attention-based aggregator. Unlike traditional parameter-based federated
learning approaches, RHFL requires only the transmission of semantic embeddings from Fog nodes to the Cloud.
This design not only protects raw data privacy, but also enables more flexible modeling, stronger interpretability,
and a globally informed modeling capability. We evaluate the framework on a synthetic smart grid dataset
covering five households, and compare it against centralized models, statistical methods, and parameter-based
federated learning baselines. The experimental results show that RHFL achieves competitive forecasting accuracy
while strictly preserving data privacy. Moreover, it demonstrates superior generalization across heterogeneous
households and offers practical advantages in flexibility, training efficiency, and global model interpretability over
both centralized and parameter-based FL approaches.
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1 Introduction

Smart grids increasingly rely on accurate energy forecasting to enable demand response, dynamic pricing, and efficient
grid management. In particular, accurate household-level energy forecasting is critical for enabling personalized
demand-side management and ensuring grid stability. However, traditional centralized machine learning approaches
raise serious privacy concerns, as household energy data can reveal sensitive user behaviors.

Federated learning (FL) offers a promising paradigm to enable privacy-preserving learning by keeping raw
data local. Yet, classical parameter-averaging FL approaches (e.g., FedAvg [1]) often struggle with non-iid data
distributions and lack the ability to model global context effectively, leading to poor personalization and weak
generalization. In smart grid scenarios, household behaviors exhibit significant heterogeneity, making such naive
aggregation ineffective. _

We propose a novel hierarchical federated learning architecture that decouples local learning and global modeling.
Local Fog models learn per-household temporal embeddings, which are transmitted to a Cloud-level attention-based
aggregator. The Cloud model integrates these embeddings with global contextual features (e.g., weather, calendar
effects), enabling globally informed yet privacy-preserving forecasting. This design allows global patterns to be
captured without sharing raw data or local model parameters, ensuring strong privacy guarantees.

Our contributions are:

o We design a representation-based hierarchical FL architecture tailored for smart grid energy forecasting.

e We implement an attention-based Cloud aggregator that learns to integrate heterogeneous household embeddings.

e We conduct extensive experiments comparing against centralized, statistical, and parameter-based FL baselines.

e We analyze accuracy, resource efficiency, and explainability of our method.

e Our approach enables flexible global model outputs through semantic embedding aggregation, rather than relying
on parameter averaging. "

2 Related Work
2.1 Federated Learning

Federated learning [1] enables collaborative model training without centralized data collection. Classical approaches
aggregate model parameters (e.g., FedAvg), but struggle under data heterogeneity [2]. Recent works explore
personalized FL and representation-based FL to mitigate these issues.
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2.2 Energy Forecasting

Energy forecasting is a well-studied problem in smart grids. Time series models (ARIMA), tree-based methods
(XGBoost), and deep learning approaches (LSTM) have been applied [3]. However, most require centralized data.
Few works address privacy-preserving forecasting via FL.

Our prior work [7] explored privacy-preserving optimization-based energy management in smart grids, focusing
on demand-supply planning through linear programming. In contrast, this paper focuses on the forecasting layer,
developing an RHFL framework to enable flexible and privacy-preserving household energy forecasting.

2.3 Hierarchical Architectures

Hierarchical FL structures have been explored to address system heterogeneity [4]. Our work differs by focusing on
representation transfer and attention-based global aggregation, tailored for energy forecasting.

Compared to prior hierarchical FL works [4], our method focuses on representation-based transfer rather than
parameter averaging, enabling dynamic and explainable global modeling.

3 Problem Formulation
Given N households H = {h;}/_;, each with local dataset:

D; = {(x”, ")}y, =) R

and shared context c; € R™ (weather, time).
Our goal is to learn a prediction function:

3 = fo(96,(x7), c2) (1)
where:

® gp, is the Fog model per household .
e fy is the Cloud-level aggregator.

where the objective is to join_tly optimize {6;} and ¢ to minimize the global loss £. The overall objective function is
defined as £L =3, , 2y, 98, where £(-) denotes the forecasting loss function (e.g., MSE).

4 Proposed Method
4.1 Fog Node Architecture
Each Fog node implements an embedding extractor and local predictor:
egi) = MLPembed (xgi)) (2)
3" = MLPprea(ef”) (3)
Only ey) and yt(i) are transmitted to the Cloud.

4.2 Cloud Aggregator Architecture

The Cloud model integrates embeddings from all households and shared contextual features through an attention-
based aggregation mechanism. Given the contextual feature vector c;, the Cloud first generates a contextual query
representation:

7; = MLP,x(cy), (4)

where MLP,, is a multilayer perceptron that encodes weather, time, or other public information.
Each household embedding e,(f) interacts with the global context z; through a bilinear attention matrix U:

exp (thUegi))
>, €xXp (z;rUegj)> ’

where a; denotes the relative importance of household : at timestep ¢. The attention weights depend jointly on the
shared context ¢; and the embedding e'”.
The attention outputs are aggregated to obtain a global embedding:

&= el (6)
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Finally, the global forecast combines both the attention-weighted local predictions and the contextual global
MLP head:

gy = ﬁzai@x’ + (1 — f) MLP([zs, &), (7)

where 8 € [0,1] is a learnable mixing weight balancing local ensemble and global context refinement.
This formulation allows the Cloud to adaptively emphasize households that are contextually relevant while

learning a global forecasting representation. All parameters U and those in MLP. and MLP are trained jointly
with the rest of the Cloud model.
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Figure 1: Proposed Representation-Based Hierarchical Federated Learning Architecture. Each Fog node extracts temporal
embeddings from local data and sends them to the Cloud, which aggregates them using attention mechanisms combined with
public contextual information. The Cloud model produces globally informed forecasts without accessing raw household data
or model parameters.

The embeddings are transferred per timestep and per sample, enabling the Cloud to dynamically learn global
consumption patterns through attention over temporally varying representations, rather than relying on static

4.3 Training Algorithm

Algorithm 1 Training Protocol of Fog+Cloud Architecture

Require: Local datasets {D;}, global context {c;}
1: Initialize Fog model parameters 6;, Cloud parameters ¢
2: for each communication round r =1... R do
3: for each household 7 in parallel do

Train gp, locally on D; for Efe epochs
Extract embeddings egi) = g, (xff))
Send {e{?, 4" ¢;} to Cloud

end for

Aggregate embeddings at Cloud
9: Train fs; on {egz),yt(i),ct} for Egloua epochs

10: end for

il L

4.4 Training Protocol
We alternate between:

e Local Fog training on D; to optimize 6;.
o Cloud training on aggregated embeddings {(e{”, 9 ¢y)} to optimize ¢.

4.5 Core Differences from Parameter-Based FL

Our proposed Fog+Cloud architecture differs fundamentally from classical parameter-based federated learning
methods (such as FedAvg and FedLSTM) in both information flow and modeling capability.

In parameter-based FL, local models periodically send model parameters to the Cloud, which aggregates them
via simple averaging. This aggregation assumes that model parameters are semantically aligned across heterogeneous
clients—a problematic assumption in highly personalized domains such as household energy consumption.

In contrast, our approach transfers temporal embeddings from each Fog node to the Cloud. These embeddings
encode high-level representations of local behaviors, enabling the Cloud to perform dynamic attention-based
aggregation. Furthermore, the Cloud model incorporates public context and household embeddings to explicitly
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model inter-household differences. This architecture allows the Cloud to learn global patterns in a semantically rich
and interpretable way, while maintaining privacy since raw data and local model parameters are never transmitted.

This representation-based design provides a more flexible and powerful alternative to parameter averaging,
particularly in non-iid and heterogeneous federated settings.

The overall loss is: )
L= Zf (?Jtz ) et ,C )) &)

5 Baseline Models

To evaluate the effectiveness of the proposed Fog+Cloud architecture, we compare it against the following baseline
models:

e Fog Only: Each household trains its own local neural model, with no Cloud aggregation.

e Fog+Cloud (Proposed): Our hierarchical FL framework with embedding transfer and attention-based Cloud
aggregation.

e LSTM: Each household independently trains a Long Short-Term Memory model for time series forecasting.

FedAvg: Classical parameter-based FL where household models are trained locally and periodically averaged on

the Cloud.

FedLSTM: Variant of FedAvg with LSTM as the local model.

ARIMA: Autoregressive Integrated Moving Average model trained per household.

X GBoost: Gradient boosted trees trained in a centralized manner using all household data.

Centralized MLP: Multilayer Perceptron trained centrally on merged household data. Serves as an upper bound.

6 Evaluation Metrics

We evaluate the forecasting performance using four standard regression metrics: Mean Squared Error (MSE),
Mean Absolute Error (MAE), Coefficient of Determination (R?), and Symmetric Mean Absolute Percentage Error
(SMAPE). These metrics jointly assess both accuracy and robustness of predictions.

e Mean Squared Error (MSE):

n

MSE = %Z(yi — 3s)? (9)

=1
MSE penalizes large prediction errors more heavily and emphasizes overall stability of the forecasting model.
e Mean Absolute Error (MAE):

1o .
MAE = 23l - (10)
1=
MAE measures the average magnitude of prediction errors, regardless of direction.
e Coefficient of Determination (R?):

Z?:l (v — 9)?
R? evaluates how well the model explains the variance of the target variable, with values closer to 1 indicating

better fit.
e Symmetric Mean Absolute Percentage Error (SMAPE):

R?=1- (11)

I~ 2lyi—
SMAPE:mo-—ZM, e=10"%. (12)
n oyl + (Gl + €

SMAPE quantifies the relative deviation between predictions and true values, normalized by their average
magnitude. A smaller SMAPE indicates higher forecasting accuracy, while the small constant e prevents division
by zero.

In addition, we measure:

e Training time per model.
e Average CPU utilization during training.
e Peak memory usage during training.

7
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7 Experimental Setup
7.1 Dataset

We generate synthetic smart grid data for five households over multiple months, including:
o Daily energy consumption (target variable).

e Hourly device-level consumption.

o Weather features: temperature, precipitation, sunlight, humidity.
e Temporal features: day of week, month, weekend indicator.

The input feature space is of dimension d = 21.

7.2 Training Protocol

Each Fog model is trained locally for 200 epochs.

Fog embeddings are transferred to the Cloud for 10 communication rounds.
Cloud model is trained with attention-based aggregation of embeddings.
Baseline models follow their respective standard training pipelines.

We use MLPs with two hidden layers of 64 units and ReLU activations for both MLPembeq and MLPyreq. The
Cloud model MLP;, also uses two hidden layers of 64 units. The embedding dimension egi) is set to 64. We use
Adam optimizer with learning rate 1e—3 and batch size 32 for both Fog and Cloud training. Each Fog model is
trained for 200 epochs per communication round, and the Cloud model is trained for 50 epochs per round.

8 Results and Discussion
8.1 Overall Forecasting Accuracy
Across four metrics (MAE, MSE, R?, SMAPE), RHFL ranks first or second on most households. Centralized MLP

and XGBoost achieve slightly lower error in a few cases but require centralized data, whereas RHFL preserves
privacy with comparable accuracy.
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Figure 2: Comparison of forecasting performance across models.
Figures 2a—-2d show that:

e The proposed Fog+Cloud model consistently outperforms Fog-only and most baseline FL models.
e Centralized MLP and XGBoost achieve slightly better raw accuracy but require centralized data.
e FedLSTM and ARIMA perform poorly under household heterogeneity.
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8.2 Resource Efficiency
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Figure 3: Resource Usage comparison across models: Training time (seconds), CPU utilization (%), and memory usage

(MB).
Table 1: Comprehensive Training Resource and Time Summary Across Models
Model Household Time (s) CPU (%) Memory (MB)
Fog Household 1 5 v 20.0 0.1
Fog Household 2 2717 25.0 0.0
Fog Household 3 25.76 0.0 0.0
Fog Household 4 26.98 333 0.0
Fog Household 5 26.75 0.0 0.0
Fog+Cloud (Total) = 36.07 14 52.8
LSTM = 209.51 53.3 7.5
FedAvg - 901.67 2.6 1.4
FedLSTM = 1967.09 Set p
XGBoost = 1.71 Bl 4.0
ARIMA = 7.25 91.5 6.0
Centralized MLP - 4.53 0.5 2.9
Detailed Fog + Cloud Breakdown

Fog Training (5 Households Avg.) - Ly 167 0.02
Cloud Aggregation - 4.85 14 52.8
Total (Fog + Cloud) - 36.07 1.4 52.8

Observations:

e Fog-+Cloud achieves reasonable training time (36s), comparable to centralized models.

e FedLSTM is extremely resource-intensive.
e ARIMA uses high CPU but is less accurate.

8.3 Visual Analysis

Overall the residuals are centered around zero across all households, indicating that the models produce unbiased

forecasts without systematic under- or over-prediction.

Scatter plots (True vs Pred) show the forecasting quality:

8.4 Comparative Analysis

Overall, the Fog+Cloud model achieves a strong trade-off:
e Competitive forecasting accuracy (close to centralized).

e Privacy-preserving: only embeddings transferred.

e Efficient training time and low resource consumption.

e Superior generalization compared to parameter-based FL.

8.5 Limitations and Future Work

e Current Cloud model can be enhanced with more sophisticated attention mechanisms.
e Embedding compression can further reduce communication overhead.

e Real-world datasets will be-evaluated in future work.

Unlike FedAvg and FedLSTM, our method enables the Cloud model to learn global patterns explicitly from the
distributed embeddings, supporting interpretable and dynamically adaptable global forecasting. Parameter-based
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Figure 4: True vs Predicted energy consumption across five households.
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FL methods lack this modeling capability, as their global models are constrained to parameter averages without
semantic context awareness.

Furthermore, future work will explore integrating the Cloud-level forecasting outputs with an optimization layer
(e.g., linear programming-based supply mode optimization), enabling end-to-end privacy-preserving smart energy
management.

9 Conclusion

This paper proposed a representation-based hierarchical federated learning (RHFL) framework for household energy
forecasting. By decoupling local representation learning and global aggregation, the proposed architecture achieves
privacy preservation, scalability, and interpretability. Experiments on multi-household datasets demonstrated that
RHFL attains competitive forecasting accuracy while maintaining low communication and computational costs.

Compared to parameter-averaging FL methods, RHFL enables a semantically rich and context-aware global
model through embedding-level aggregation. Future work will extend the framework with advanced attention
mechanisms, embedding compression, and real-world deployment on smart grid systems. We also plan to integrate
the Cloud-level forecasting module with optimization-based energy management, enabling a fully privacy-preserving
and intelligent end-to-end energy management pipeline.
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